Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Thoracic Deformation Contours in a Frontal Impact

1991-10-01
912891
The objective of the study was to document the thoracic deformation contours in a simulated frontal impact. Unembalmed human cadavers and the Hybrid III anthropomorphic manikins were tested. Data from the newly developed External Peripheral Instrument for Deformation Measurement (EPIDM) was used to derive deformation patterns at upper and lower thoracic levels. Deceleration sled tests were conducted on three-point belt restrained surrogates positioned in the driver's seat (no steering assembly) using a horizontal impact test sled at velocities of approximately 14.0 m/s. Lap and shoulder belt forces were recorded with seat belt transducers. The experimental protocol included a Hybrid III manikin experiment followed by the human cadaver test. Both surrogates were studied under similar input and instrumentation conditions, and identical data acquisition and analysis procedures were used. All six testedcadavers demonstrated multiple bilateral rib fractures.
Technical Paper

Thoracic Trauma Assessment Formulations for Restrained Drivers in Simulated Frontal Impacts

1994-11-01
942206
Sixty-three simulated frontal impacts using cadaveric specimens were performed to examine and quantify the performance of various contemporary automotive restraint systems. Test specimens were instrumented with accelerometers and chest bands to characterize their mechanical responses during the impact. The resulting thoracic injury severity was determined using detailed autopsy and was classified using the Abbreviated Injury Scale. The ability of various mechanical parameters and combinations of parameters to assess the observed injury severities was examined and resulted in the observation that belt restraint systems generally had higher injury rates than air bag restraint systems for the same level of mechanical responses. To provide better injury evaluations from observed mechanical parameters without prior knowledge of what restraint system was being used, a dichotomous process was developed.
Technical Paper

Thoraco-Abdominal Deflection Responses of Post Mortem Human Surrogates in Side Impacts

2012-10-29
2012-22-0002
The objective of the present study was to determine the thorax and abdomen deflections sustained by post mortem human surrogate (PMHS) in oblique side impact sled tests and compare the responses and injuries with pure lateral tests. Oblique impact tests were conducted using modular and non-modular load-wall designs, with the former capable of accommodating varying anthropometry. Tests were conducted at 6.7 m/s velocity. Deflection responses from chestbands were analyzed from 15 PMHS tests: five each from modular load-wall oblique, non-modular load-wall oblique and non-modular load-wall pure lateral impacts. The thorax and abdomen peak deflections were greater in non-modular load-wall oblique than pure lateral tests. Peak abdomen deflections were statistically significantly different while the upper thorax deflections demonstrated a trend towards significance.
Technical Paper

Three-Year-Old Child Out-Of-Position Side Airbag Studies

1999-10-10
99SC03
A series of twenty-nine tests was completed by conducting static deployment of side airbag systems to an out-of-position Hybrid III three-year-old dummy. Mock-ups (bucks) of vehicle occupant compartments were constructed. The dummy was placed in one of four possible positions for both door- and seat-mounted side airbag systems. When data from each type of position test were combined for the various injury parameters it was noted that the head injury criteria (HIC) were maximized for head and neck tests, and the chest injury parameters were maximized for the chest tests. For the neck injury parameters, however, all of the test positions produced high values for at least one of the parameters. The study concluded the following. Static out-of- position child dummy side airbag testing is one possible method to evaluate the potential for injury for worst-case scenarios. The outcome of these tests are sensitive to preposition and various measurements should be made to reproduce the tests.
Technical Paper

Tractor Induced Wheel Runover Injuries

1994-09-01
941728
In the present investigation a tractor wheel runover accident was simulated to obtain biomechanical information relating to mechanism of injury. Twelve cadaver porcine specimens were runover with the right front wheel of a tractor. Specimens were placed on a six-axis force plate and thorax contours were recorded temporally. Results indicated up to 68% compression of the chest occurred during the runover event. The shear force in the direction of travel was a significant factor in the type of fractures that occurred to the rib cage. Pathology determined from x-ray revealed multiple fractures per rib in the area directly below the path of the tire. Autopsy evaluation revealed soft tissue contusion on the left side in the area of wheel path. There was often extra blood in the pericardial space and examination of the brain showed petechial hemorrhaging subdurally.
X